Реакция на белок

Реакция на белок

Реакция на белок

Присутствие белков в биологических объектах или растворах можно определить с помощью цветных реакций, протекание которых обусловлено наличием в белке специфических групп и пептидных связей.

Реактивы: водный раствор яичного белка (белок одного куриного яйца отделяют от желтка, растворяют в 15–20-кратном объеме дистиллированной воды, затем раствор фильтруют через марлю, сложенную в 3–4 слоя, и хранят в холодильнике;10 %-й раствор гидроксида натрия; 30 %-й раствор гидроксида натрия; 1 %-ный раствор сульфата меди; 1 %-й раствор ацетата свинца; концентрированная азотная кислота; 0,5 %-й раствор нингидрина.

Оборудование: пробирки; водяная баня или спиртовка.

Задание 1. Биуретовая реакция.

В щелочной среде белки, а также продукты их гидролиза – пептиды дают фиолетовое или красно-фиолетовое окрашивание с солями меди. Реакция обязана наличию пептидных связей в белках:

Интенсивность окраски зависит от длины полипептида.

  1. В пробирку налейте 5 капель раствора яичного белка, затем 10 капель 10 %-го раствора щелочи.
  2. Добавьте 1–2 капли раствора сульфата меди, смесь перемешайте. Появляется красно-фиолетовое окрашивание.

Задание 2. Ксантопротеиновая реакция.

Реакция характерна для некоторых ароматических аминокислот (фенилаланина, тирозина, триптофана), а также для пептидов, их содержащих. При действии азотной кислоты образуется нитросоединение желтого цвета. Далее нитропроизводные могут реагировать со щелочью с образованием натриевой соли, имеющей желто-оранжевое окрашивание:

Данную работу необходимо выполнять в вытяжном шкафу, соблюдая особую осторожность!

  1. В пробирку налейте 5 капель раствора яичного белка и ОСТОРОЖНО по стенке прибавьте 3–4 капли концентрированной азотной кислоты.
  2. Смесь осторожно нагрейте. Выпадает осадок, который окрашивается в желтый цвет.
  3. После охлаждения в пробирку ОСТОРОЖНО по стенке прилейте 10 капель 30 %-го раствора NaOH, желтая окраска переходит в оранжевую.

Задание 3. Реакция на серусодержащие аминокислоты (реак ция Фоля).

В остатках серусодержащих аминокислот цистеина и цистина сера при щелочном гидролизе отщепляется, образуя сульфиды. Сульфиды, взаимодействуя с ацетатом свинца, образуют осадок сульфида свинца черного или буро-черного цвета.

  1. В пробирке смешайте 5 капель раствора яичного белка, 5 капель 30 %-го раствора щелочи и 2 капли раствора ацетата свинца.
  2. Смесь осторожно нагрейте на спиртовке до кипения и кипятите. Через некоторое время появляется буровато-черное или черное окрашивание.

Задание 4. Нингидриновая реакция.

Реакция характерна для аминогрупп в α-положении и обусловлена наличием α-аминокислот в молекуле белка. При нагревании белка с водным раствором нингидрина аминокислоты окисляются и распадаются, образуя двуокись углерода, аммиак и соответствующий альдегид. Восстановленный нингидрин конденсируется с аммиаком и окисленной молекулой нингидрина, образуя соединение фиолетово-синего цвета:

В пробирку вносят 5 капель 1 %–го раствора яичного белка, добавляют по 3 капли 0,5 %-го раствора нингидрина и нагревают до кипения. Через 2–3 минуты появляется розовое, красное, а затем сине-фиолетовое окрашивание.

Оформите проведенные исследования в виде таблицы.

Реакция на белок

Как определить белок перед нами или нет? Нужно провести качественные реакции на белок, скажете вы, и будете правы. Таких реакций несколько. Для биуретовой реакции нам потребуются растворы стиральной соды и медного купороса.

Приготовляем несколько растворов, которые содержат белок, например, мясной и рыбный бульон. Растворы налейте в пробирки примерно наполовину. Прибавьте немного стиральной соды (раствор соды желательно прокипятить и остудить). После этого добавьте голубого раствора медного купороса. Если в испытуемом отваре действительно есть белок, то окраска сразу станет фиолетовой. Такие характерные реакции на белок идут только в том случае, если в растворе действительно есть белок.

В состав некоторых белковых молекул входит, помимо углерода, водорода, кислорода и азота, еще и сера. Проведем следующую реакцию на белок. Немного яичного белка поместите в пробирку с раствором стиральной соды и, нагрев пробирку, добавьте в нее немного раствора основного ацетата свинца Рb(СН3СОО)2*3Н2O. Если содержимое пробирки почернеет, значит, сера есть: это образуется сульфид свинца PbS, вещество черного цвета.

Реакции на белок можно провести, используя его денатурацию – свертывание при нагревании и переход в нерастворимую форму. Почему, чтобы приготовить вкусный бульон, надо нарезанное мясо положить в холодную воду, а когда хотят приготовить вкусное отварное мясо, то большие куски опускают в кипяток.

Налейте в пробирку холодной воды, опустите в нее немного сырого рубленого мяса и нагрейте. По мере нагревания образуются в большом количестве серые хлопья. Это свернувшийся белок, пена, который при дальнейшем нагревании переходит из мяса в раствор и придает бульону характерный вкус. А мясо становится менее вкусным. Если же вскипятить в пробирке воду заранее, и положить сырое мясо уже в кипяток, то оно моментально станет серым, зато хлопьев образуется мало. Тот белок, что находился на поверхности, под действием высокой температуры сразу свернулся и закупорил многочисленные поры, которые пронизывают мясо. При этом белки в том числе, уже не могут перейти в раствор. Значит, они остаются внутри мяса, придавая ему хороший вкус, а бульон, разумеется, получается несколько хуже.

Оказывается, денатурация белка происходит не только при нагревании. Налейте в пробирку чуть-чуть свежего молока и капните одну-две капли уксуса или раствора лимонной кислоты. Молоко тут же скиснет, образуя белые хлопья. Это свертывается молочный белок. Кстати, без такой реакции на белок не приготовить творога.

Когда молоко оставляют в теплом месте, то его белок тоже свертывается, но уже по иной причине – это работают молочнокислые бактерии. Их известно очень много, и все они вырабатывают молочную кислоту, даже если питаются не молоком. Реакцию на белок в этом случае можно провести так. Профильтруйте немного скисшего молока и прибавьте к сыворотке несколько капель какого-нибудь самодельного индикатора. Цвет индикатора покажет, что в растворе есть молочная кислота.

Реакция на белок

РЕАКЦИЯ ПИОТРОВСКОГО (БИУРЕТОВАЯ РЕАКЦИЯ)

В белках аминокислоты связаны друг с другом по типу полипептидов и дикетопиперазинов. Образование полипептидов из аминокислот происходит путем отщепления молекулы воды от аминогруппы одной молекулы аминокислоты и карбоксильной группы другой молекулы:

Образующаяся группа –С(О)–NН– называется пептидной группой, связь С–N, соединяющая остатки млекул аминокислот, – пептидной связью.

При взаимодействии дипептида с новой молекулой аминокислоты получается трипептид и т. д.

Дикетопиперазины образуются при взаимодействии двух молекул аминокислот с отщеплением двух молекул воды:

Дикетопиперазины были выделены из белков Н.Д.Зелинским и В.С.Садиковым в 1923 г.

Наличие в белке повторяющихся пептидных групп подтверждается тем, что белки дают фиолетовое окрашивание при действии небольшого количества раствора медного купороса в присутствии щелочи (биуретовая реакция).

Описание опыта. 2–3 мл раствора белка нагревают с 2–3 мл 20%-го раствора едкого кали или натра и несколькими каплями раствора медного купороса. Появляется фиолетовое окрашивание вследствие образования комплексных соединений меди с белками.

  • РЕАКЦИЯ РУЭМАННА (НИНГИДРИНОВАЯ РЕАКЦИЯ (1911))

a -Аминокислоты реагируют с нингидрином, образуя сине-фиолетовый комплекс (пурпур Руэманна), интенсивность окраски которого пропорциональна количеству аминокислоты.

Реакция идет по схеме:

Реакция с нингидрином используется для визуального обнаружения a -аминокислот на хроматограммах (на бумаге, в тонком слое), а также для колориметрического определения концентрации аминокислот по интенсивности окраски продукта реакции.

Описание опыта. В пробирку наливают 1 мл 1%-го раствора глицина и 0,5 мл 1%-го раствора нингидрина. Содержимое пробирки осторожно нагревают до появления сине-фиолетового окрашивания.

  • Реакция Сакагучи

Эта реакция на аминокислоту аргинин основана на взаимодействии аргинина с a -нафтолом в присутствии окислителя. Ее механизм еще полностью не выяснен. По-видимому, реакция осуществляется по следующему уравнению:

Поскольку производные хинониминов (в данном случае нафтохинона), у которых водород иминогруппы –NH– замещен на алкильный или арильный радикал, всегда окрашены в желто-красные тона, то, по-видимому, оранжево-красный цвет раствора при проведении реакции Сакагучи объясняется возникновением именно производного нафтохинонимина. Не исключена, однако, вероятность образования еще более сложного соединения за счет дальнейшего окисления оставшихся NH-групп аргининового остатка и бензольного ядра a -нафтола:

Описание опыта. В пробирку наливают 2 мл 0,01%-го раствора аргинина, затем добавляют 2 мл 10%-го раствора едкого натра и несколько капель 0,2% спиртового раствора a -нафтола. Содержимое пробирки хорошо перемешивают, приливают 0,5 мл раствора гипобромита и вновь перемешивают. Немедленно добавляют 1 мл 40%-го раствора мочевины для стабилизации быстро развивающегося оранжево-красного окрашивания.

  • РЕАКЦИЯ ФОЛЯ

Это реакция на цистеин и цистин. При щелочном гидролизе «слабосвязанная сера» в цистеине и цистине достаточно легко отщепляется, в результате чего образуется сероводород, который, реагируя со щелочью, дает сульфиды натрия или калия. При добавлении ацетата свинца(II) образуется осадок сульфида свинца(II) серо-черного цвета.

Описание опыта. В пробирку наливают 1 мл раствора цистина, прибавляют 0,5 мл 20%-го раствора гидроксида натрия. Смесь нагревают до кипения, а затем добавляют 0,5 мл раствора ацетата свинца(II). Наблюдается выпадение серо-черного осадка сульфида свинца(II):

При взаимодействии a -аминокислот с формальдегидом образуются относительно устойчивые карбиноламины – N-метилольные производные, содержащие свободную карбоксильную группу, которую затем титруют щелочью:

Эта реакция лежит в основе количественного определения a -аминокислот методом формального титрования (метод Сёренсена).

Описание опыта. В пробирку наливают 5 капель 1%-го раствора глицина и прибавляют 1 каплю индикатора метилового красного. Раствор окрашивается в желтый цвет (нейтральная среда). К полученной смеси добавляют равный объем 40%-го раствора формальдегида (формалин). Появляется красное окрашивание (кислая среда):

Это реакция на аминокислоту глицин.

Описание опыта. К 2 мл 0,1%-го раствора глицина, доведенного добавлением 10%-го раствора щелочи до рН = 8, приливают 0,5 мл водного раствора о-фталевого диальдегида. Реакционная смесь начинает медленно окрашиваться в ярко-зеленый цвет. Через несколько минут выпадает зеленый осадок.

  • ОБРАЗОВАНИЕ КОМПЛЕКСОВ С МЕТАЛЛАМИ

a -Аминокислоты образуют с катионами тяжелых металлов внутрикомплексные соли. Со свежеприготовленным гидроксидом меди(II) все a -аминокислоты в мягких условиях дают хорошо кристаллизующиеся внутрикомплексные (хелатные) соли меди(II) синего цвета:

В таких солях ион меди координационными связями соединен с аминогруппами.

Описание опыта. В пробирку наливают 3 мл 3%-го раствора сульфата меди(II), добавляют несколько капель 10%-го раствора гидроксида натрия до образования голубого осадка. К полученному осадку гидроксида меди(II) приливают 0,5 мл концентрированного раствора глицина. При этом образуется темно-синий раствор глицината меди:

Эта реакция используется для обнаружения a -аминокислот, содержащих ароматические радикалы. Тирозин, триптофан, фенилаланин при взаимодействии с концентрированной азотной кислотой образуют нитропроизводные, имеющие желтую окраску. В щелочной среде нитропроизводные этих a -аминокислот дают соли, окрашенные в оранжевый цвет.

Описание опыта. В пробирку наливают 1 мл раствора тирозина и добавляют 0,5 мл концентрированной азотной кислоты. Смесь нагревают до появления желтой окраски. После охлаждения добавляют 1–2 мл 20%-го раствора гидроксида натрия до появления оранжевой окраски раствора:

Описание опыта. В две пробирки наливают по 1–2 мл раствора белка и медленно, при встряхивании, добавляют по каплям в одну пробирку насыщенный раствор сульфата меди, а в другую – 20%-й раствор ацетата свинца. Образуются осадки труднорастворимых солеобразных соединений белка. Опыт иллюстрирует применение белка как противоядия при отравлении солями тяжелых металлов.

  • Открытие аминного азота в белках

Описание опыта. В сухую пробирку помещают немного сухого белка, например желатины. Прибавляют пятикратное количество натронной извести (смесь едкого натра и гидроксида кальция), перемешивают встряхиванием и подогревают. Выделяется аммиак, вызывающий посинение розовой лакмусовой бумажки, смоченной водой. Одновременно ощущается запах жженого волоса, что всегда наблюдается при сжигании белковых веществ.

  • Открытие серы в белках

Описание опыта. В пробирку наливают около

0,5 мл раствора уксуснокислого свинца и прибавляют раствор едкого кали до растворения образовавшегося осадка гидроксида свинца. В другую пробирку наливают

2–3 мл раствора белка и приливают такой же объем полученного раствора плюмбита. Нагревают смесь до кипения в течение 2–3 мин. Появление темного окрашивания указывает на образование сульфида свинца.

  • РЕАКЦИЯ НА ПРИСУТСТВИЕ СЕРОСОДЕРЖАЩИХ a -АМИНОКИСЛОТ В БЕЛКЕ

Качественной реакцией на серосодержащие a -аминокислоты является реакция Фоля. Белки, содержащие остатки цистеина или цистина, также дают эту реакцию.

Описание опыта. В пробирку наливают 10 капель раствора яичного белка и вдвое больший объем 20%-го раствора гидроксида натрия. Содержимое пробирки нагревают до кипения (1–2 мин). К полученному щелочному раствору добавляют 5 капель раствора ацетата свинца(II) и вновь кипятят реакционную смесь. Наблюдается появление серо-черного осадка.

  • РЕАКЦИЯ НА ТРИПТОФАН

Триптофан, реагируя в кислой среде с альдегидами, образует окрашенные продукты конденсации. Например, с глиоксиловой кислотой (являющейся примесью к концентрированной уксусной кислоте) реакция протекает по уравнению:

По аналогичной схеме протекает и реакция триптофана с формальдегидом.

В ходе проведенного исследования мы выявили по литературным источникам имеющуюся информацию о цветных качественных реакциях на белковые аминокислоты; выполнили ряд перечисленных реакций и составили базу данных. Эта база может быть использована в школьной практике как в теоретическом плане, так и в практическом, т. к. мы приводим краткие, но подробные описания выполнения всех опытов.

Из предложенных 18 качественных реакций каждая практически осуществима в школьном курсе химии и имеет важное практическое значение. Сопровождение реакций химическими уравнениями конкретизирует и углубляет знания по биологической и органической химии, особенно знания учащихся специализированных биологических и химических классов.

Ермаков А.Н., Арасимович В.В., Смирнова-Иконникова М.И., Мирри И.К. Методы биохимического исследования растений. М.,1952, 520 с.

Полянская А.С., Шевелева А.О. Методическая разработка по лабораторным работам: «Аминокислоты» и «Белки». Л., 1976, 37 с.

Пустовалова Л.М. Практикум по биохимии. 1999, 541 с.

Руководство к практическим занятиям по органической химии. Под ред. В.М.Родионова. М., 1954, 111 с.

Соловьев Н.А. Лабораторные работы по биологической химии. Методическая разработка. СПб., 1996, 70 с.

Филиппович Ю.Б., Егорова Т.А., Севастьянова Г.А. Практикум по общей биохимии. М., 1982, 311 с.

З.Саитов, С.В.Телешов, Б.Харитонцев,

секция «Юный химик» РХО им. Д.И.Менделеева (г. Тобольск)

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *